A Self-Evolving Interval Type-2 Fuzzy Neural Network for Nonlinear Systems Identification

نویسندگان

  • Chia-Feng Juang
  • Chun-Feng Lu
چکیده

This paper proposes a Self-Evolving Interval Type-2 Fuzzy Neural Network (SEIT2FNN) for nonlinear systems identification. The SEIT2FNN has both on-line structure and parameter learning abilities. The antecedent parts in each fuzzy rule of the SEIT2FNN are interval type-2 fuzzy sets and the fuzzy rules are of the Takagi-Sugeno-Kang (TSK) type. An on-line clustering method is proposed to generate fuzzy rules which flexibly partition the input space. For parameter learning, the consequent part parameters are tuned by a rule-ordered Kalman filter algorithm for high accuracy learning performance. The antecedent part parameters are learned by gradient descent algorithms. Comparisons with identification using other type-1 and type-2 fuzzy systems verify the performance of the SEIT2FNN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliding mode incremental learning algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy neural networks

Type-2 fuzzy logic systems are an area of growing interest over the last years. The ability to model uncertainties and to perform under noisy conditions in a better way than type-1 fuzzy logic systems increases their applicability. A new stable on-line learning algorithm for interval type-2 Takagi–Sugeno–Kang (TSK) fuzzy neural networks is proposed in this paper. Differently from the other rece...

متن کامل

Gas Flow Metering Using the PSO Optimized Interval Type- 2 Fuzzy Neural Network

Orifice flow meter is one of the most common devices in industry which is used for measuring the gas flow. This system includes an orifice plate, temperature and pressure transmitters, and a flow computer. The flow computer is used for collecting information related to temperature, pressure, and their differences under various conditions. Also the flow computer can calculate the flow rate of ga...

متن کامل

Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks Illustrated with the Case of Non-linear Identification

Neural Networks (NN), Type-1 Fuzzy Logic Systems (T1FLS) and Interval Type-2 Fuzzy Logic Systems (IT2FLS) are universal approximators, they can approximate any non-linear function. Recent research shows that embedding T1FLS on an NN or embedding IT2FLS on an NN can be very effective for a wide number of non-linear complex systems, especially when handling imperfect information. In this paper we...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Fuzzy Logic as the Logic of Natural Languages

A method for response integration in modular neural networks with type-2 fuzzy logic for biometric systems p. 5 Evolving type-2 fuzzy logic controllers for autonomous mobile robots p. 16 Adaptive type-2 fuzzy logic for intelligent home environment p. 26 Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP p. 36 An efficient computational method to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008